Upland Cotton Gene GhFPF1 Confers Promotion of Flowering Time and Shade-Avoidance Responses in Arabidopsis thaliana
نویسندگان
چکیده
Extensive studies on floral transition in model species have revealed a network of regulatory interactions between proteins that transduce and integrate developmental and environmental signals to promote or inhibit the transition to flowering. Previous studies indicated FLOWERING PROMOTING FACTOR 1 (FPF1) gene was involved in the promotion of flowering, but the molecular mechanism was still unclear. Here, FPF1 homologous sequences were screened from diploid Gossypium raimondii L. (D-genome, n = 13) and Gossypium arboreum L. genome (A-genome, n = 13) databases. Orthologous genes from the two species were compared, suggesting that distinctions at nucleic acid and amino acid levels were not equivalent because of codon degeneracy. Six FPF1 homologous genes were identified from the cultivated allotetraploid Gossypium hirsutum L. (AD-genome, n = 26). Analysis of relative transcripts of the six genes in different tissues revealed that this gene family displayed strong tissue-specific expression. GhFPF1, encoding a 12.0-kDa protein (Accession No: KC832319) exerted more transcripts in floral apices of short-season cotton, hinting that it could be involved in floral regulation. Significantly activated APETALA 1 and suppressed FLOWERING LOCUS C expression were induced by over-expression of GhFPF1 in the Arabidopsis Columbia-0 ecotype. In addition, transgenic Arabidopsis displayed a constitutive shade-avoiding phenotype that is characterized by long hypocotyls and petioles, reduced chlorophyll content, and early flowering. We propose that GhFPF1 may be involved in flowering time control and shade-avoidance responses.
منابع مشابه
A constitutive shade-avoidance mutant implicates TIR-NBS-LRR proteins in Arabidopsis photomorphogenic development.
In plants, light signals caused by the presence of neighbors accelerate stem growth and flowering and induce a more erect position of the leaves, a developmental strategy known as shade-avoidance syndrome. In addition, mutations in the photoreceptors that mediate shade-avoidance responses enhance disease susceptibility in Arabidopsis thaliana. Here, we describe the Arabidopsis constitutive shad...
متن کاملPhytochrome D acts in the shade-avoidance syndrome in Arabidopsis by controlling elongation growth and flowering time.
Shade avoidance in higher plants is regulated by the action of multiple phytochrome (phy) species that detect changes in the red/far-red ratio (R/FR) of incident light and initiate a redirection of growth and an acceleration of flowering. The phyB mutant of Arabidopsis is constitutively elongated and early flowering and displays attenuated responses to both reduced R/FR and end-of-day far-red l...
متن کاملVariation in shade-induced flowering in Arabidopsis thaliana results from FLOWERING LOCUS T allelic variation
Plants have evolved developmental mechanisms to ensure reproduction when in sub-optimal local environments. The shade-avoidance syndrome is one such mechanism that causes plants to elongate and accelerate flowering. Plants sense shade via the decreased red:far-red (R:FR) ratio that occurs in shade. We explored natural variation in flowering behavior caused by a decrease in the R:FR ratio of Ara...
متن کاملPhytochrome B in the mesophyll delays flowering by suppressing FLOWERING LOCUS T expression in Arabidopsis vascular bundles.
Light is one of the most important environmental factors that determine the timing of a plant's transition from the vegetative to reproductive, or flowering, phase. Not only daylength but also the spectrum of light greatly affect flowering. The shade of nearby vegetation reduces the ratio of red to far-red light and can trigger shade avoidance responses, including stem elongation and the accele...
متن کاملArabidopsis DNA topoisomerase I alpha is required for adaptive response to light and flower development
DNA topoisomerase I alpha (TOP1α) plays a specific role in Arabidopsis thaliana development and is required for stem cell regulation in shoot and floral meristems. Recently, a new role independent of meristem functioning has been described for TOP1α, namely flowering time regulation. The same feature had been detected by us earlier for fas5, a mutant allele of TOP1α In this study we clarify the...
متن کامل